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A number of current theories of plasticity in amorphous solids assume at their basis that plastic deformations
are spatially localized. We present in this paper a series of numerical experiments to test the degree of locality
of plastic deformation. These experiments increase in terms of the stringency of the removal of elastic contri-
butions to the observed elastoplastic deformations. It is concluded that for all our simulational protocols the
plastic deformations are not localized, and their scaling is subextensive. We offer a number of measures of the
magnitude of the plastic deformation, all of which display subextensive scaling characterized by nontrivial
exponents. We provide some evidence that the scaling exponents governing the subextensive scaling laws are
nonuniversal, depending on the degree of disorder and on the parameters of the systems. Nevertheless, under-
standing what determines these exponents should shed considerable light on the physics of amorphous solids.
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I. INTRODUCTION

A. Motivation

Much of the theoretical analysis of deformation and plas-
tic flow in amorphous solids and other noncrystalline mate-
rials (structural glasses, metallic glasses, pastes, foams, gels,
etc.) is still influenced to a large degree by the understanding
of crystalline materials. In the latter the deformation and
flow are governed by topological defects known as disloca-
tions, whose dynamics are the basis of the theory of crystal-
line plasticity [1]. Indeed, following the pioneering work of
Kobayashi ef al. [2] and Maeda and Takeuchi [3] on metallic
glasses and those of Argon and Kuo [4] and Argon and Shi
[5] on bubble rafts, workers in the field of amorphous elas-
toplasticity [6,7] proposed theoretical schemes based on the
notion that also in amorphous solids, plastic events are car-
ried by some sort of microstructural defects referred to as
“shear transformation zones” (STZ). While the precise nature
of these STZ or how to measure them experimentally or even
simulationally has never been fully clarified, their existence
as the source of “quanta” of plastic relaxation carried by a
small number of atoms was taken as a basis for developing
mean-field models of elastoplasticity. Although these models
are not unique and are sometimes even in disagreement with
each other, careful attempts to apply them to a variety of
phenomena, from shear banding [8] to fracture [9] and from
necking instabilities [10] to grooving via Grinfeld instabili-
ties [11], all showed considerable promise and a fair agree-
ment with experiments or simulations. The fundamental
question of whether plasticity in amorphous solids is indeed
due to local events in which a microscopic number of atoms
(independent of the system size) is involved remained unan-
swered.

A serious doubt on this fundamental assertion was re-
cently cast by Maloney and Lemaitre [12] with their presen-
tation of a series of two-dimensional atomistic computer
simulations of amorphous solids subject to simple shear in
the athermal quasistatic limit. These authors argued that the
plastic events themselves were lines of slip which span the
length of the simulations cell. If it were shown that these
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findings extend to physical experiments, this would put in
question the very fundamental assumptions underlying
mean-field theories that were put forward, irrespective of
their relative success to parametrize a number of interesting
elastoplastic phenomena. In a recent meeting at the Lorentz
center in Leiden, the conclusions of Maloney and Lemaitre
were criticized [13] on the basis of the algorithm used, in
which after each step of strain the energy was minimized,
irrespective of the computer time needed for this minimiza-
tion or whether the trajectory followed is physical. This
opens up the possibility that the spanning events seen in [12]
would not be seen in a system with “natural” dynamics in
which the limit of zero strain rate is not to be confused with
arbitrary waiting times between strain steps.

The aim of this paper is not to form judgment about the
assumed locality of plastic deformations in laboratory ex-
periments done at finite strain rates and finite temperatures.
Rather, we focus on the fundamental issue of the spatial ex-
tent of plastic deformations using a variety of algorithms and
a number of simulational tests for the locality (or rather non-
locality) of these deformations in two-dimensional amor-
phous solids. Among other things we provide evidence that
the results found in [12] are generic; but, we go further in
analyzing the system-size dependence of various measures of
elastoplastic deformation. Our conclusions are even more
pessimistic than those given by [12]; we conclude that it is
quite difficult to try to isolate the plastic contribution to an
elastoplastic event. The “plastic energy” part of such an
event is ill defined; every plastic deformation is accompanied
by an elastic deformation which is trivially long ranged be-
cause elasticity is long ranged. The elastic contribution to
every energy change in an elastoplastic event can be much
larger than the purely plastic energy change even if the latter
were well defined. Measuring the latter is almost like weigh-
ing the captain by weighing the captain with the ship and the
ship without the captain and taking the difference. We there-
fore propose below a number of measures that are able to
distinguish the irreversible plastic contribution from the elas-
tic affine and nonaffine contributions. Our conclusion is that
the generic plastic deformations are not localized, and this is
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FIG. 1. (Color online) The potential (1) used in the present
simulations in comparison to the more standard o/r'? potential and
to the Lennard-Jones potential.

not because of the elastic response that accompanies it. We
will show that direct measures of the ‘“size” of the purely
plastic events scale with the size of the system similarly to
the scaling of the elastoplastic events.

The structure of this paper is as follows. In the second
part of the introduction, we describe the model used in the
majority of the paper below. In Sec. II, we describe an ex-
periment of pulling one particle in a glassy system of varying
sizes and measuring the maximal force on this particle before
the plastic deformation. We show that the average maximal
force depends on the size of the system as a power law,
indicating that the system is never too large such that the
walls do not matter. The power law has a nontrivial exponent

8 k g 4

)

Below the units of length, energy, mass, and temperature
are (o), €, m, and €/ky where kg is Boltzmann’s constant.
The time units 7, are accordingly 7,=1(m(c)*/€). The mo-
tivation of this somewhat lengthy form of the potential is
to have continuous first and second derivatives at the
built-in cutoff of r;=0;(k/By)""**?. In the present simula-
tions, we chose k=10, By=0.2. The choice of a quartic rather
than a quadratic correction term is motivated by numerical
speed considerations, avoiding the calculation of square
roots. In all the simulations discussed below, the number
density N/V=1.176 and the boundary conditions are peri-
odic.
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that we discuss below. In Sec. III, we consider systems of
various sizes under strain and study the scaling properties of
the distributions of stress and energy drops when the system
reaches a steady-state plastic flow. We demonstrate that these
distributions are characterized by subextensive scaling with
nontrivial exponents, again indicating that the plastic events
are not localized. We introduce a measure of the size of
plastic events that filters out the effect of nonaffine elasticity
and show that this measure scales with essentially the same
exponent as the totality of the elastoplastic energy drop. Fi-
nally, to remove the last doubts, in Sec. IV we introduce a
model glass for which we can precisely measure the size and
extent of a purely plastic event, filtering out completely any
possible elastic contribution. The conclusion is as above that
the size of plastic events scales in a subextensive fashion
with a nontrivial exponent. In Sec. V, we provide a summary
of the result and discuss the apparent nonuniversality of the
scaling exponents. It is stated that understanding the numeri-
cal values of the found exponents should be an important
step in improving our understanding of the physics of amor-
phous solids.

B. Model description

Almost all the simulations below are performed in a
glassy system consisting of polydispersed soft disks. We
work with point particles of equal mass m in two dimensions
with pairwise interaction potentials. Each particle i is as-
signed an interaction parameter o; from a normal distribution
with mean 1. The variance is governed by the polydispersity

o—(0))?
parameter A=15% where Azzw. With the definition

O'ij=%(0'i+ a;), the potential assumes the form (cf. Fig. 1)

2 Kkl (k+2) 1/(k+2)
4) _(k+2)(k+4)<&) ] | rijS%,(ﬁ)
By

k 1/(k+2)
; ’”z:i>‘fij<;0>

(1)

II. SYSTEM-SIZE DEPENDENCE OF THE FORCE
ON A SINGLE PARTICLE

To initiate the discussion of locality vs nonlocality issues,
we begin with a simulation of the lovely experiment pre-
sented in [14]. In this experiment, one pulls a single disk at a
constant (low) velocity through a disordered array of disks
whose diameters have two possible values. In our case, we
use the system described in Sec. I B. We start by quenching
a system of N=16 384 particles from 7=1.0 to 7=0.05 at a
cooling rate of 107%€¢/(kgmy). At this point, we remove any
residual heat by conjugate gradient minimization [15]. After
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FIG. 2. (Color online) The configuration of the pulling experi-
ment. The center particle (in dark green) is pulled in a random
direction and the force exerted on it is measured, in addition to the
total energy of the system. The outer particles (in red) are stationary
and are not allowed to move. We are interested in the influence of
the radius R on the measured quantities.

this preparation we choose one particle out of the N available
ones (referred to below as the “center” particle) and draw a
circle of radius R around it. Next we freeze all the particles
outside this circle, leaving the particles inside the circle to
interact normally according to Newton’s equations. An ex-
ample of the results of such a procedure is shown in Fig. 2.
The procedure is then repeated for each and every one of the
N particles for the sake of statistics.

The experiment performed consists of pulling the center
particle at a velocity vy=0.005(c)/ 7. We reach this velocity
with a smooth initiation as seen in Fig. 3 in order to mini-
mize elastic shock waves. Obviously, when the particle be-
gins to move it increases the elastic energy in the whole
system. This increase continues until the first plastic event in
which an irreversible reorganization of the particle positions
takes place. This event is irreversible in the sense that until it
happens one can reverse the motion and return to the initial
condition, but after the event heat is released in the form of
kinetic energy and reversibility is lost. An example of a typi-
cal run is available in a movie that can be found in [16], and
the results of this run are displayed in Fig. 3. One can see in
the movie that the plastic event appears local to the eye. The
main question of this paper is whether this is just an eyeball
impression or is it quite true. We study this issue by changing
the radius R and examining the distribution of the maximal
force exerted on the particle before the plastic failure. At
each value of R, we repeat the experiment N times, once for
each particle in the system being the center particle. In each
trial the center particle is pulled in a random direction and
we measure the force exerted on it in the direction of the
motion.

In Fig. 3, one can see the force as a function of time and
as a function of displacement for a typical run. Naively, one
could expect that if the plastic failure were a localized phe-
nomenon then the average (over N) maximal force in the
direction of pulling before that failure should not depend
crucially on the circle radius R or if it does depend on R
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FIG. 3. (Color online) The force exerted on the center particle
and the potential energy of the system as a function of time (left
panels) and as a function of displacement (right panels) for a typical
run with R=18.0. Note the linearity of the force vs displacement
before the plastic failure; this is the elastic branch which is linear up
to the maximum. Sometime nonaffine elasticity destroys the linear-
ity seen here. At zero time, the velocity increases smoothly from
zero (up to second derivative) in order to minimize shock waves.

that dependence should fall off exponentially to an
R-independent value as R increases. To test this expectation,
we compute the average maximal force for different values
of R. In fact, when we increase R we find that the maximal
force falls off very slowly as a function of R, as a power law
(cf. Fig. 4). The distributions of maximal force p(f,,.x) move
systematically to smaller values of f,,, when R increases.
For the present system, we find a power-law decay in the
average value of the maximal force, with the excellent fit
exhibited in the lower panel of Fig. 4. The power law reads
as

(fmax> =f30 +BR™7, (2)

with B=79.84, y=1.37, and f*=30.67 being the asymptotic
average maximal force for R — . This power law is the first
one found in this paper with a nontrivial exponent, others
will follow below. We have checked that the exponent in the
power law is not universal, being dependent on the potential
and other characteristics of the system. At this point, we do
not have a solid theory to predict the value of either this or
the other exponents discussed below, but we conjecture that
the present exponent is determined by the fractal dimension
D of the force chains created by the loading. Obviously, it is
highly desirable to develop such scaling relations in the near
future.

The reason of the slow decay in the average maximal
force is that in disordered systems, one can always find re-
gions that either respond via nonaffine elasticity or yield
plastically for smaller forces when the system increases in
size and the availability of softer regions becomes apparent.
Nevertheless, the convergence to a finite average maximal
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FIG. 4. (Color online) Upper panel: the distributions of maximal
force before plastic event in the pulling experiment, for different
radii of system sizes. The radius increases from right to left. Lower
panel: the scaling of the mean maximal force as a function of the
system size, demonstrating the scaling law (2) in linear coordinates
and in the inset as a log-log plot.

force for R— o0 shows that there exists a material parameter,
analogous to the yield stress, which determines the density of
weak pathways per unit volume when the system is suffi-
ciently large. We can therefore conclude that the plastic
events incurred during the pulling of the center particle
“know” about the size of the system, and the disorder does
not screen the boundary from the local loading. One could
argue that this is expected since the loading creates force
chains that must end at the boundaries and that the long-
range effects found here are nothing but a consequence of the
fact that elasticity is long ranged. Indeed, it is very difficult
to disentangle purely plastic from elastic contributions in any
elastoplastic material. Thus to drive our point further, we
turn next to the stress and energy drops during plastic irre-
versible deformations under a different kind of loading.

III. SYSTEM-SIZE DEPENDENCE
OF ELASTOPLASTIC EVENTS

To explore the locality vs nonlocality issues of the plastic
deformation, we turn now to a direct exploration of the plas-
tic failure when our system is subjected to a simple shear. In
such simulations, one expects to see an elastic branch where
the stress increases linearly with the strain until the yield
stress is achieved and plastic events begin. There are a num-
ber of ways that such simulations can be done. One way is
by solving the so-called Sllod equations [17], another way is
to introduce and move two walls with no-slip boundary con-
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FIG. 5. (Color online) Typical stress-strain and potential-energy-
strain curves for a system with 4096 particles. The blowup at the
right panel demonstrates the procedure of reducing the increment
steps to increase numerical precision in determining the stress and
energy drops.

ditions [18], and the third is to impose small strain incre-
ments as described below and then to minimize the energy of
the resulting configuration under the constraints imposed by
the strain increment [ 12]. We opt for the third option in order
to be able to accurately measure the distribution of stress and
energy drops in the plastic events which are well defined
only in this method. In doing so, we will be able also to
validate the results of [12] and even to strengthen them.

In detail, we prepare the same system described in Sec.
I B but now with N=625, 1024, 2500, 4096, 10000, and
20164 cooled at a rate of 107%¢/(kg7). Beginning from a
quenched unstrained configuration, we impose a simple
shear strain increment which will be denoted Je. This is
achieved by applying the following transformation on the
particles coordinates:

Fy— T+ ryée,

r,—r (3)

y y?

in addition to imposing Lees-Edwards boundary conditions.
Typical stress-strain and potential-energy-strain curves for a
system with N=4096 are shown in Fig. 5. One sees the main
elastic branch after which the evolution consists of small
elastic branches ending with plastic drops. We employ a ba-
sic strain increment of 10™* for systems smaller than N
=10 000 and 5 X 107> for the larger systems. To increase our
precision in determining the stress and energy drops and to
guarantee that we do not overshoot and miss the next mini-
mum, we stop the simulation after a drop is detected, back-
track to the configuration prior to the drop, and half the strain
increments. The way the detection of the plastic drop is done
is explained in detail in the Appendix. This procedure is
repeated until the strain increment is smaller than 107 for
systems smaller than N=10 000 and 5X 1077 for the larger
systems. An example of a trajectory approaching the plastic
drop is shown in the blown-up right panel of Fig. 5.

A. System-size dependence of stress and energy drops

The statistics of the stress and energy drops is collected
from between 4500 and 9000 plastic drops for each system
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FIG. 6. (Color online) The raw distributions of energy drops
(upper left) and stress drops (upper right). The lower panels exhibit
the system-size dependence of the mean energy drop (lower left)
and mean stress drop (lower right). This system-size dependence
appears very accurately to conform with power laws (AU) ~ N and
(Ac)~NP with a=~0.37 and B~-0.63. These scaling laws are
used to rescale the distributions as shown in Fig. 7

size, where all the considered drops are after steady-state
plastic flow had been reached, with measurements collected
after about 40% strains.

The raw distributions of the energy and stress drops are
displayed in the upper panels of Fig. 6. The lower panel of
the same figure displays the system-size dependence of the
average energy drop and average stress drop, respectively, in
a log-log plot. The conclusion is that the mean drop is de-
scribed to a very high precision by power laws of the form

(AUY ~ N (Acd) ~ NP, (4)

with

a=~037, B~-0.63. (5)

While we did not expect these scaling exponents, it is very
easy to understand that there exists a scaling relation be-
tween them,

a-B=1. (6)

To see this, we note that in the athermal limit at very low
strain rates, the steady-state plastic flow occurs around a
fixed value of the stress, which is the yield stress oy. On the
average, for every elastic increase in the energy which occurs
for a strain increment Ae we have a corresponding plastic
drop Ao, and we can estimate the mean energy drop accord-
ing to

0'y<A6>V=O'y%V=<AU>. (7)

Since in our systems of fixed density V~ N, the scaling re-
lation (6) follows immediately.
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FIG. 7. (Color online) The distributions of energy drops (left
panel) and stress drops (right panel) shown in the upper panels of
Fig. 5 after rescaling by energy drops by N and the stress drops by
NP. Note that the data collapse is quite perfect for probabilities
larger than about 1% and then begin to meander systematically; we
cannot determine at this point whether this meandering is due to
paucity of data or due to multiscaling of the higher moments.

We can use scaling law (4) to rescale the raw distribution
functions of Fig. 6. The resulting distributions are presented
in Fig. 7. We note that the data collapse is superb for prob-
abilities larger than about 1%. For lower probabilities, the
quality of the collapse deteriorates; due to the paucity of data
there we cannot determine whether the deteriorating collapse
is due to multiscaling of higher moments or due to statistical
errors. If we attempt to rescale using a somewhat higher
exponents, we can get the tails to collapse but then the high
probabilities fail to collapse. The scaling (4) and the quality
of the data collapse demonstrate that the plastic drops are not
localized but, in fact, are subextensive. This finding is in
agreement with [12,19], although the numerical value of our
scaling exponents « and B differs from theirs (both [12,19]
report a=—3=0.5). We return to the issue of nonuniversality
of the scaling exponents in Sec. IV.

As mentioned in the introduction, the work of [12] was
criticized on the basis of their algorithm; it was proposed that
the energy minimization procedure follows an unphysical
trajectory in configuration space and increases artificially the
amount of the energy drop in a plastic event. Also, since the
energy minimization does not correspond to real-time units,
the system has effectively infinite time to reach the minimum
energy, and this is not a proper small strain rate limit. We
demonstrate now that this criticism is incorrect and, in fact,
molecular dynamics can often lead to larger energy drops.
Energy minimization often stops in the next available mini-
mum, whereas true dynamics can often trigger subsequent
energy drops and ends up increasing the size of the average
region involved in the plastic event. This conclusion is dem-
onstrated with trajectories of the two methods in Fig. 8, and
a movie of a multiple avalanche that is seen in true molecular
dynamics is available in [16]. We conclude that the energy
minimization procedure produces a lower bound to the en-
ergy drops rather than an exaggerated result. One should
understand that the true dynamics releases kinetic energy af-
ter the first drop which is negligible on the system scale,
being the difference between a single saddle and a neighbor-
ing minimum. But before this negligible energy is spread
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FIG. 8. (Color online) Left panel: an example for which the
initial and final energy and stress values are the same for the energy
minimization algorithm and the real-time dynamics. In dotted blue
line is the latter trajectory and in continuous green line is the
former. For the dynamics, the green diamond represents the
quenched configuration after the system has reached a steady state
without flow (with only thermal fluctuations around a minimum of
the energy landscape). Right panel: an example for which the true
real-time dynamics results in larger energy and stress drops com-
pared to the energy minimization procedure. Both panels are for
systems with N=2500 in the steady-state plastic flow.

over the whole system, it heats up considerably the local
neighborhood and can easily trigger further energy drops
which in turn heat up the local region even further. Accord-
ingly, the “energy drop” is well defined only within the en-
ergy minimization procedure, where it is not in the eyes of
the beholder.

One could argue that the reason that the energy drops are
subextensive is only because every change in an elastoplastic
medium involves also an elastic relaxation. This is of course
true; since elasticity is long ranged, one could expect some
kind of subextensive scaling. In fact, this underlines our be-
lief that it is futile to talk about pure plastic energy changes
since the contribution of the purely plastic part of an energy
drop can be very small compared to the associated elastic
contribution. Furthermore, any measure that employs the co-
ordinates of all the particles in the system, such as various
participation numbers, will always collect some elastic relax-
ation contributions which can be quite large. Notwithstand-
ing, we propose here that the subextensive scaling of the
energy drops is not only because of the elastic contributions
and that we can demonstrate this scaling also when we care-
fully exclude the elastic contributions. This will be done in
the next subsection.

B. System-size dependence of purely plastic contributions

To single out the purely plastic contributions to the elas-
toplastic events, we will track the neighbor lists during the
straining simulations. Before every flow event, each particle
in the system is assigned a neighbor list consisting of the
particles residing within the range of interaction [cf. Eq. (1)].
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FIG. 9. (Color online) The distributions of n for different size
systems. Inset: the scaling of the average of n with the system size.
A power law is detected (see text).

After the elastoplastic event, each particle is checked against
the original neighbor list and the number of neighbor
changes is monitored. It is important to state that upon load-
ing, the neighbor list may change due to nonaffine elastic
effects when a neighboring particle leaves the range of inter-
action or a new particle enters that range. During an affine
linear elastic loading, the neighbor list does not change at all.
However, during the loading we encounter also nonlinear
nonaffine elasticity. We have checked carefully and deter-
mined that during the latter there exist T1 processes in which
the neighbor list does change. Such processes are reversible
and can be traced back by unloading. In our simulations, we
find that in order to detect more than one change in the
neighbor list per particle in the nonaffine elastic processes
we need to undergo very large strain intervals. We therefore
conclude that during the plastic drops, where the displace-
ment field changes only little, it is unlikely that the nonaffine
elastic strains would involve more than one change per par-
ticle in the neighbor list. We thus propose that by filtering
those particles, whose neighbor list had undergone more than
one change during the elastoplastic event, we capture essen-
tially only those that were a part of a purely plastic irrevers-
ible event. We formed a measure of the size n of the purely
plastic event from summing up the number of particles
whose neighbor list changed by more than unity. In Fig. 9,
we show the raw distribution of n for systems of varying
sizes, with an inset exhibiting the average of n. As before, we
find that the raw distribution tend to higher and higher values
of n when the system size increases, and as before we find
that the average of n scales nicely with the system size,

(n) ~ N¢, (8)

with {=0.39. Note that with the present accuracy, we cannot
rule out that {=a.
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TABLE 1. The coefficients in Eq. (10).

Ao -1.0
A 0.

Ay 0.642897426047121
A, 30.503000042685606
Ay ~80.366384684339579
As 72.652179536433835
Ag ~22.431692320826986

0.9 1 1.1 1.2 1.3 1.4

FIG. 10. (Color online) The potential chosen for the model of
Sec. IV.

IV. YET ANOTHER MODEL TO REMOVE
THE LAST DOUBTS

The purpose of this section is to remove the last doubts
about the subextensivity of the plastic events. To this aim, we
introduce a model which has a measure of plastic deforma-
tion that is insensitive by construction to nonaffine elasticity.
As above, the system consists of point particles in two di-
mensions interacting via a pairwise potential

)12 (0_)6 1 ]
-\ =] +—=hyl|, r=ox
r 4

oxg <r= olxg+x,)

u(r)

\
m

| — |

—

S |qQ

0, r> o(xg+x.),
)

which consists of a shifted repulsive part of the standard
Lennard-Jones (LJ) potential, connected via a hump to a re-
gion that is smoothed continuously to zero (up to second
derivatives) (cf. Fig. 10). The point x, is the position at
which the LJ potential is minimal x,= 2" and the position
where the potential vanishes is o(xy+x,.). The parameter A
determines the depth of the minimum. The polynomial P(x)
is chosen as

6
P(x) =, A, (10)
=0

with the coefficients given in Table I. Note that with these
parameters, the position of the shallow maximum in Fig. 10
is r,=1.336 189 578 406 025.

We use the position of 7, to define events that are plastic
by definition and not elastic: whenever the distance between
a pair of particles which were bonded exceeds r;, their energy

drops irreversibly and spreads around. Similarly, whenever a
pair of particles that were not bonded forms a new bond
when their distance becomes smaller than r,, their energy
drops irreversibly and is spread around. We can thus simply
count the number of particles that underwent a bond break or
a bond creation during a stress drop to obtain an unquestion-
able measure of the size of the purely plastic event. To do
this, we repeat the straining experiment in much the same
way as discussed above; but for systems with the present
potential (9) for system sizes of N=1024, 2500, 4096, and
10000, keeping the same value of the density p as before. In
every stress drop event, we count the number of particles
experiencing a bond change, which is denoted as n,. We
stress that we carefully ascertained that there is absolutely no
change in this measure except during the drops, even when
the system undergoes very substantial nonaffine elastic dis-
placements. Figure 11 displays the distribution of n;, as a
function of system size and also in the inset the dependence
of (n,) as a function of N in a log-log plot. The best fit reads
as

(np) ~ NX, (11)

with x=0.33. We believe that the difference between y and
{ is outside the error bars for either number, indicating that

0 100 200 300 400 500 600
ny

FIG. 11. (Color online) The distribution of the number of par-
ticles participating in a purely plastic event as a function of the
system size. The number 7, is defined such that elastic processes
cannot contribute to this measure by construction. In the inset, we
show a log-log plot of the average (n,) as a function of N; the
scaling law is Eq. (11).
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changing the potential may modify the values of the scaling
exponents. To strengthen this conclusions, we measured also
the scaling exponents « and S for this case. The measured
numbers are consistent with y, i.e., =y and B= y—1.

V. SUMMARY AND CONCLUSIONS

We have examined the issue of the nonlocality of plastic
deformation by a set of numerical experiments of increasing
stringency in filtering out the elastic contributions. First we
examined the maximal force exerted on a particle moving
within a glassy medium of finite size and discovered that the
average maximal force before a plastic deformation depends
on the system size as a power law. Not being able to filter out
the elastic from the plastic effects in this experiment, we
turned to examining the distribution of stress drops and en-
ergy drops in a straining experiment once the system ex-
ceeded the yield stress and landed on the steady-state plastic
flow. Again we found that both the stress and the energy
drops had distribution functions that exhibited an interesting
scaling law with the size of the system, strengthening the
conclusion that the plastic events are not localized. The scal-
ing exponents found were nontrivial, but in agreement with
the presumably exact scaling relation (6). Having still diffi-
culties in distinguishing elastic from plastic contributions in
these measurements, we turned to the neighbor lists whose
large changes are most likely not due to nonaffine elasticity.
Those changes scaled again with the size of the system, and
the scaling exponent { was numerically sufficiently close to
« to indicate that they are the same exponents and that the
scaling of the energy drops in the plastic events is the same
as that of the purely plastic contribution. Finally, to remove
the last doubts, we constructed a model in which the plastic
events can be accurately separated from any elastic contribu-
tion and found that also there the size of the plastic events
scales subextensively with the size of the system. The expo-
nent y was sufficiently different from ¢ to indicate a lack of
universality in these exponents. Indeed, direct measurement
of « in the last model resulted in a= y=0.33, with a differ-
ent value from a=0.37 for the previous potential. It is very
likely that the scaling exponents seen here depend on the
details of the models, on the nature of disorder and on pa-
rameters such as pressure, density, etc. Of course, the space
dimensionality is also important, and there is evidence that in
three dimensions one finds different exponents [20]. We pro-
pose that understanding these exponents and finding a theo-
retical calculation of them will shed important light on the
physics of amorphous solids.

Finally, we remind the reader that the experiments re-
ported here are done at zero temperature and at infinite heat
extraction rates. The situation at finite temperature and finite
strain rates needs a separate examination which is beyond the
scope of this paper. In [21] the magnitude of stress drops in
strained bubble rafts were found to depend very weakly, if at
all, on number of bubbles in the raft. Whether this is due to
the finite strain rate or due to some salient different physics
remains to be answered by future careful simulations of the
type presented above but with finite strain rates.
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APPENDIX: THE DETECTION OF PLASTIC DROPS

Since our system is disordered, the affine transformation
defined in Eq. (3) does not take the system to a minimum of
the potential under the strain constraint. Instead, the system
reaches some state having the energy U,;. We denote the
energy read after minimizing this state as U, and define the
difference between the energies of the system after imposing
the affine strain increment and the resulting minimized con-
figuration as 6U= U, — U,. We expect this difference to be
proportional to the system size since it must be extensive.
Also, since this quantity represents the extent to which the
affine transformation does not match the new potential-
energy minimum, we expect this mismatch to be symmetric
under the direction in which the strain increment is imposed
starting from a given configuration. So, these considerations
lead us to assume S6U~ N(J€)’. In Fig. 12, the measured
function 6U(8e) is given for some initial state randomly se-
lected from the obtained steady-state configurations of the
N=1024 particle system.

The functional form of SU(JSe) is indeed symmetric and
follows a quadratic form with good precision up to strain
increments well above the basic strain increment step used in
our simulations. To check how far down in strain increment
step we can go using this measure, we repeat a similar mea-
surement, now over some orders of magnitude in e, and for
all simulated system sizes. The results are displayed in Fig.
13; it is obvious that double-precision numerics allow us to

1.5

O measured
——fit to SU = A(Je)?

oU

0.5¢

FIG. 12. (Color online) The measured (red dots) energy differ-
ence U= U,y— U, as a function of the strain increment de and the
fit (blue continuous line) to SU=A(J5e)?, with A=9285.0.
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FIG. 13. (Color online) The scaled energy difference 5 (sym-
bols) compared to %=(5€)2 (black continuous line). Double preci-
sion numerics allows us to rely on this quantity only up to strain
increments of Se~ 1077, below which large errors are accumulated.

rely on 6U measured by potential-energy differences only up
to strain increments of de> 1077, below which large errors
are accumulated. This limitation has already been discussed
in length in [22] for a similar experiment. The energy differ-
ences in Fig. 13 are rescaled by the system size N and the
factor k= % measured in the de range in which measure-
ments of U are reliable. For our system, x~ 10.0 far from
instabilities.

In Fig. 14, we display the evolution of « throughout a
typical simulation run for a system of N=1024 particles. The
divergences of « are completely analogous to those analyzed
in great detail in [12] for a different (but closely related) set
of quantities, where a \'e,— e law was found. It turns out that
for the strain increments used in our experiments, k is
bounded from above by ~ 102, unless a plastic flow event has
occurred. In the latter case, the measured value of x averages
around ~ 10, for all system sizes. This enormous difference
in orders of magnitude of x makes it an extremely robust
measure for the detection of plastic events.

1

0 0.02 0.04 0.06 0.08 0.1 0.12
€

8 L L L L L
0 0.02 0.04 0.06 0.08 0.1 0.12
€

FIG. 14. (Color online) Demonstration of the qualitative behav-
ior of k (lower panel, see text), in relation with the plastic stress
drops (upper panel), for a typical N=1024 run approaching a
steady-state flow.
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FIG. 15. (Color online) Top panel: comparison of SU calculated
by energy differences (blue circles) to the same quantity calculated
via Eq. (A1) (green diamonds). The black line corresponds to i—[l\/,
=(8€)?. Using the Hessian allows us to go to e values that are
orders of magnitude smaller than those enabled by the energy dif-
ference. Lower panels: analysis of the onset of a typical flow event
for a N=625 system; the lower left panels show the stress-strain and
the k-strain curves. The lower right panel demonstrates the \%_E
divergence, in qualitative agreement with [12]. The red continuous

line has a slope of —1/2.

To better establish the connection with the findings in
[12], we first note that while U cannot be calculated to the
required precision by computing differences, we can improve
the accuracy in the 6U measurements using an equivalent
calculation. We impose the transformation (3) and calculate
the displacement vector dx; for each particle, after minimiz-
ing the transformed state. Using the Hessian matrix defini-

tion H;;= ;2_—21, we can expand the potential energy near the
Lata)

minimum,
1
U({éx}) - Uy = EHij5xi6xj’ (A1)
The left-hand side of Eq. (A1) is the exact definition of 8U;
but as opposed to the energy difference calculation, it con-
sists of a sum of terms of the same order, which takes ad-
vantage of the availability of an analytic expression for H,;.
In the top panel of Fig. 15, the improvement of the use of Eq.
(A1) is apparent, which verifies that this measure can be used
to validate the agreement with [12]. A description of the
onset of a typical plastic event for a N=625 system is dis-
played in the bottom panels of Fig. 15, where a similar
(Vey—e€)~! divergence is found for the quantity .
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